본문 바로가기
SQLD

1과목 PART2. 데이터 모델과 성능

by 새싹감자 2022. 9. 28.

성능 데이터 모델링

- DB 성능향상을 목적으로 설계단계의 데이터 모델링 때부터 정규화, 반정규화, 테이블통합, 테이블분할, 조인구조, PK, FK 등 여러 가지 성능과 관련된 사항이 데이터 모델링에 반영될 수 있도록 하는 것

 

분석/설계 단계에서 데이터 모델 성능을 고려한 데이터 모델링을 수행할 경우 성능저하에 따른 재업무 비용을 최소화할 수 있는 기회를 가지게 된다. 데이터의 증가가 빠를수록 성능저하에 따른 성능개선 비용은 기하급수적 증가

 

성능 데이터 모델링 고려사항 순서

1. 데이터 모델링을 할 때 정규화를 정확하게 수행

2. DB 용량산정을 수행한다.

3. DB에 발생되는 트랜잭션의 유형을 파악한다.

4. 용량과 트랜잭션의 유형에 따라 반정규화를 수행

5. 이력모델의 조정, PK/FK 조정, 슈퍼/서브타입 조정

6. 성능관점에서 데이터 모델을 검증한다.

 

기본적으로 데이터는 속성간의 함수종속성에 근거하여 정규화되어야 한다. 정규화는 선택이 아니라 필수사항

 

함수적 종속성

- 데이터들이 어떤 기준 값에 의해 종속되는 현상

 

정규화

- 반복적인 데이터를 분리하고 각 데이터가 종속된 테이블에 적절하게 배치되도록 하는 것

- 칼럼에 의한 반복, 중복적인 속성 값을 갖는 형태는 1차 정규화의 대상

 

반정규화

- 정규화된 엔티티, 속성, 관계에 대해 시스템의 성능향상과 개발과 운영의 단순화를 위해 중복, 통합, 분리 등을 수행하는 데이터 모델링 기법

 

일반적으로

정규화 - 입력/수정/삭제 성능 향상

반정규화 - 조인 성능 향상

 

반정규화 절차

1. 반정규화 대상조사(범위처리빈도수, 범위, 통계성)

2. 다른 방법유도 검토(뷰, 클러스터링, 인덱스 조정)

3. 반정규화 적용(테이블, 속성, 관계 반정규화)

 

반정규화 대상조사

1. 자주 사용되는 테이블에 접근하는 프로세스의 수가 많고 항상 일정한 범위만을 조회하는 경우

2. 테이블에 대량의 데이터가 있고 대량의 데이터 범위를 자주 처리하는 경우에 처리범위를 일정하게 줄이지 않으면 성능을 보장할 수 없는 경우

3. 통계성 프로세스에 의해 통계 정보를 필요로 할 때 별도의 통계테이블을 생성한다.

4. 테이블에 지나치게 많은 조인이 걸려 데이터를 조회하는 작업이 기술적으로 어려운 경우

 

SORTING, ORDER BY는 반정규화 대상X

 

다른 방법유도 검토

1. 지나치게 많은 조인이 걸려 데이터를 조회하는 작업이 기술적으로 어려운 경우 VIEW를 사용한다.

2. 대량의 데이터처리나 부분처리에 의해 성능이 저하되는 경우 클러스터링을 적용하거나 인덱스를 조정함

3. 대량의 데이터는 PK의 성격에 따라 부분적인 테이블로 분리할 수 있다. (파티셔닝 기법)

4. 응용 어플리케이션에서 로직을 구사하는 방법을 변경함으로써 성능을 향상시킬 수 있다.

 

반정규화의 기법(테이블, 칼럼, 관계)

> 테이블 반정규화

- 테이블 병합(1:1, 1:M, 슈퍼/서브타입)

1. 1:1 관계를 통합하여 성능향상

2. 1:M 관계를 통합하여 성능향상

3. 슈퍼/서브 관계를 통합하여 성능향상

 

- 테이블 분할(수직분할, 수평분할)

1. 수직분할 : 칼럼단위 테이블을 디스크 I/O를 분산처리하기 위해 테이블을 1:1로 분리하여 성능향상

2. 수평분할 : 로우단위로 집중 발생되는 트랜잭션을 분석하여 디스크 I/O 및 데이터 접근의 효율성을 높여 성능을 향상하기 위해 로우단위로 테이블을 쪼갬

 

- 테이블 추가(중복, 통계, 이력, 부분테이블 추가)

1. 중복 : 다른 업무이거나 서버가 다른 경우 동일한 테이블구조를 중복하여 원격조인을 제거하여 성능향상

2. 통계 : SUM, AVG 등을 미리 수행하여 계산해둠으로써 조회 시 성능을 향상

3. 이력 : 이력테이블 중에서 마스터 테이블에 존재하는 레코드를 중복하여 이력테이블에 존재시켜 성능향상

4. 부분 : 하나의 테이블의 전체 칼럼 중 자주 이용하는 집중화된 칼럼들이 있을 때 디스크 I/O를 줄이기 위해 해당 칼럼들을 모아놓은 별도의 반정규화된 테이블 생성

 

칼럼 반정규화(중복, 파생, 이력, pk, 오작동)

1. 중복 : 조인에 의해 처리할 때 성능저하를 예방하기 위해 중복된 칼럼을 위치시킴

2. 파생 : 트랜잭션이 처리되는 시점에 계산에 의해 발생되는 성능저하를 예방하기 위해 미리 값을 계산하여 칼럼에 보관

3. 이력테이블 : 대량의 이력데이터를 처리할 때 불특정날 조회나 최근 값을 조회할 때 나타날 수 있는 성능저하를 예방하기 위해 미리 값을 계산하여 칼럼에 보관

4. PK에 의한 칼럼 추가 : 이미 PK 안에 데이터가 존재하지만 성능향상을 위해 일반속성으로 포함하는 방법

5. 응용시스템 오작동을 위한 칼럼 추가 : 업무적으로는 의미가 없지만 사용자의 실수로 원래 값으로 복구하길 원하는 경우 이전 데이터를 임시적으로 중복하여 보관하는 기법

 

관계 반정규화

- 중복 관계 추가 : 데이터를 처리하기 위한 여러 경로를 거쳐 조인이 가능하지만 이 때 발생할 수 있는 성능저하를 예방하기 위해 추가적인 관계를 맺는 방법

- 로우 체이닝 : 로우의 길이가 너무 길어서 데이터 블록 하나에 데이터가 모두 저장되지 않고 두 개 이상의 블록에 걸쳐 하나의 로우가 저장되어 있는 형태

- 로우 마이그레이션: 데이터 블록에서 수정이 발생하면 수정된 데이터를 해당 데이터 블록에서 저장하지 못하고 다른 블록의 빈 공간을 찾아 저장하는 방식

 

로우 체이닝과 로우 마이그레이션이 발생하여 많은 블록에 데이터가 저장되면 DB 메모리에서 디스크 I/O가 발생할 때 많은 I/O가 발생하여 성능저하 발생

트랜잭션을 분석하여 적절하게 1:1 관계로 분리함으로써 성능향상이 가능하도록 해야 한다.

 

PK에 의해 테이블을 분할하는 방법(파티셔닝)

1. RANGE PARTITION : 대상 테이블이 날짜 또는 숫자값으로 분리가 가능하고 각 영역별로 트랜잭션이 분리되는 경우

2. LIST PARTITION : 지점, 사업소 등 핵심적인 코드값으로 PK가 구성되어 있고 대량의 데이터가 있는 테이블의 경우

3. HASH PARTITION : 지정된 HASH 조건에 따라 해쉬 알고리즘이 적용되어 테이블이 분리

 

테이블에 대한 수평 / 수직분할의 절차

1. 데이터 모델링을 완성한다.

2. DB 용량산정을 한다.

3. 대량 데이터가 처리되는 테이블에 대해 트랜잭션 처리 패턴을 분석한다.

4. 칼럼 단위로 집중화된 처리가 발생하는지, 로우 단위로 집중화된 처리가 발생하는지 분석하여 집중화된 단위로 테이블을 분리하는 것을 검토한다.

 

슈퍼/서브 타입 모델

- 업무를 구성하는 데이터의 특징을 공통과 차이점의 특징을 고려하여 효과적 표현

- 공통의 부분을 슈퍼 타입으로 공통으로부터 상속받아 다른 엔티티와 차이가 있는 속성에 대해서는 별도의 서브엔티티로 구분

 

슈퍼/서브 타입 데이터 모델의 변환

- 슈퍼/서브타입에 대한 변환을 잘못하면 성능이 저하되는 이유 : 트랜잭션의 특성을 고려하지 않고 테이블을 설계했기 때문

1. 트랜잭션은 항상 일괄로 처리하는데 테이블은 개별로 유지되어 Union연산에 의해 성능이 저하될 수 있다

2. 트랜잭션은 항상 서브타입 개별로 처리하는데 테이블은 하나로 통합되어 있어 불필요하게 많은 양의 데이터가 집약되어 있어 성능이 저하되는 경우가 있다.

3. 트랜잭션은 항상 슈퍼+서브 타입을 공통으로 처리하는데 개별로 유지되어 있거나 하나의 테이블로 집약되어 있어 성능이 저하되는 경우가 있다.

 

슈퍼/서브 타입 데이터 모델의 변환기술

1. 개별로 발생되는 트랜잭션에 대해서는 개별 테이블로 구성(OneToOne Type)

2. 슈퍼타입 + 서브타입에 대해 발생되는 트랜잭션에 대해서는 슈퍼+서브타입 테이블로 구성(Plus Type)

3. 전체를 하나로 묶어 트랜잭션이 발생할 때는 하나의 테이블로 구성(Single Type, All in One Type)

 

인덱스 특성을 고려한 PK / FK DB 성능향상

- 인덱스의 특징은 여러 개의 속성이 하나의 인덱스로 구성되어 있을 때 앞쪽에 위치한 속성의 값이 비교자로 있어야 좋은 효율을 나타낸다.

- 앞쪽에 위치한 속성의 값이 가급적 '=' 아니면 최소한 범위 'BETWEEN' '<>' 가 들어와야 효율적이다.

- 물리적인 테이블에 FK 제약 걸었을 때는 반드시 FK 인덱스를 생성하도록 하고 FK 제약이 걸리지 않았을 경우에는 FK 인덱스를 생성하는 것을 기본정책으로 하되, 발생되는 트랜잭션에 의해 거의 활동되지 않았을 때만 FK 인덱스를 지우는 방법으로 하는 것이 적절한 방법

-> FK에도 인덱스를 생성할 필요가 있다.

 

 

분산 DB

1. 여러 곳으로 분산되어있는 DB를 하나의 가상 시스템으로 사용할 수 있도록 한 DB

2. 논리적으로 동일한 시스템에 속하지만, 컴퓨터 네트워크를 통해 물리적으로 분산되어 있는 데이터집합

 

분산 DB를 만족하기 위한 6가지 투명성

1. 분할 투명성(단편화) : 하나의 논리적 Relation이 여러 단편으로 분할되어 각 사본이 여러 site에 저장

2. 위치 투명성 : 사용하려는 데이터의 저장 장소 명시 불필요, 위치정보가 시스템 카탈로그에 유지

3. 지역사상 투명성 : 지역 DBMS와 물리적 DB 사이의 Mapping 보장

4. 중복 투명성 : DB 객체가 여러 site에 중복되어있는지 알 필요가 없는 성질

5. 장애 투명성 : 구성요소의 장애에 무관한 트랜잭션의 원자성 유지

6. 병행 투명성 : 다수 트랜잭션 동시 수행시 결과의 일관성 유지, TimeStamp, 분산 2단계 Locking 이용

 

분산 DB 장단점

장점 : 지역 자치성, 신뢰성 가용성, 효용성 융통성, 빠른 응답속도, 비용절감, 각 지역 사용자 요구 수용

단점 : 비용증가, 오류의 잠재성 증대, 설계 관리의 복잡 성, 불규칙한 응답 속도, 통제의 어려움, 데이터 무결성 위협

 

분산 DB 적용기법

1. 테이블 위치 분산 : 설계된 테이블을 본사와 지사단위 로 분산

2. 테이블 분할 분산 : 각각의 테이블을 쪼개어 분산

- 수평분할 : 로우 단위로 분리

- 수직분할 : 칼럼 단위로 분리

3. 테이블 복제 분산 : 동일한 테이블을 다른 지역이나 서 버에서 동시에 생성하여 관리하는 유형

- 부분복제 : 마스터 DB에서 테이블의 일부의 내용만 다 른 지역이나 서버에 위치

- 광역복제 : 마스터 DB 테이블의 내용을 각 지역이나 서버에 존재

4.테이블 요약 분산 : 지역 간에 또는 서버 간에 데이터 가 비슷하지만 서로 다른 유형으로 존재하는 경우

- 분석요약 : 동일한 테이블 구조를 가지고 있으면서 분산 되어 있는 동일한 내용의 데이터를 이용하여 통합된 데이터를 산출하는 방식

-통합요약 : 분산되어 있는 다른 내용의 데이터를 이용하 여 통합된 데이터를 산출하는 방식

 

분산 DB 설계를 고려해야하는 경우

1. 성능이 중요한 사이트

2. 공통코드, 기준정보, 마스터 데이터의 성능향상

3. 실시간 동기화가 요구되지 않는 경우, 거의 실시간의 업무적인 특징을 가지고 있는 경우

4. 특정 서버에 부하가 집중되어 부하를 분산

5. 백업 사이트 구성하는 경우

댓글